

П. Е. Голосов

ОБ ОДНОЙ МОДЕЛИ РАСПРЕДЕЛЕНИЯ ЗАДАНИЙ ДЛЯ ОБЕСПЕЧЕНИЯ КОМПЛЕКСНОЙ БЕЗОПАСНОСТИ ВЫЧИСЛЕНИЙ В ГРИД-СРЕДЕ

Внедрение технологий грид [1] требует соблюдения различных аспектов безопасности при совместном назначении заданий на узлы вычислительных систем (ВС) коллективного пользования. Это означает, что помимо выполнения традиционных требований санкционирования непосредственного доступа к ресурсам ВС (в целях чего пользователями грид-среды применяются сертификаты безопасности) необходимо гарантировать и такой аспект безопасности, как непротиворечивость назначения и выполнения параллельных пользовательских заданий в разнородной вычислительной среде, в том числе для случая их зависимости по данным. Для случая распределения множественных заданий, характеризуемых невозрастающей функцией полезности и ограничениями на пользование ресурсами различных типов, предлагается введение унифицированной метрики — пользовательской квоты на заданные типы ресурсов для определения порядка назначения ветвей заданий на ресурсы ВС.

Данное требование по непротиворечивости назначения заданий назовем требованием по качеству обслуживания заданий в грид-системе с децентрализованным управлением, которое позволяет обеспечить прогнозируемость и приемлемость времени выполнения заданий пользователей, описываемых невозрастающей функцией полезности (актуальности), в условиях нехватки вычислительных ресурсов. Реализация механизмов обеспечения данного требования основана на применении условно-денежного исчисления в вычислительной среде коллективного пользования.

Для решения заданий типов A_1 , A_2 ,... применяется совокупность распределенных разнородных вычислительных ресурсов R_1 , R_2 ,... объединенных в единую систему. Относительно независимые пользователи U_1 , U_2 ,... начиная с некоторого момента времени $t_0=0$ обращаются к администратору системы с запросами на выполнение имеющихся у них наборов заданий:

$$\{W_{_{_{\boldsymbol{v}}}}^{(i)}\},\, v=1,\,2,\,...,\,i=1,\,2,\,...,$$
 где через $W_{_{_{\boldsymbol{v}}}}^{(i)}$ обозначим V-й запрос пользователя $U_{_{i}}.$ Тип этого задания обозначим через $j_{_{\boldsymbol{v}}}^{(i)}$.

Особенности задач таковы, что объем вычислений в них является случайным и не зависит от интересов пользователя и типа используемого вычислительного ресурса. Это означает следующее. Конкретное задание состоит из конечного набора элементарных заданий, очередность выполнения которых указывает пользователь, но количество элементарных заданий, необходимых для выполнения всего задания, является случайной величиной ξ_{i} , вероятностное распределение которой зависит от типа соответствующего задания A_{i} . Такая постановка вопроса не исключает ситуации, когда случайная величина ξ_{i} принимает одно фиксированное значение. Время выполнения

таких заданий изучалось в [4, 5]. Характерным свойством рассматриваемых заданий является возможность распараллеливания их выполнения. При этом ветви выполняемого параллельного задания зависимы по данным. Максимальную степень распараллеливания задания типа А (максимальное количество одновременно выполняемых ветвей задания) обозначим как т..

Ресурсоемкость задания типа $A_{_{\! 1}}$ жестко связана с алгоритмом его решения, потенциально ориентированным на конкретный ресурс $R_{_{g}}$, поэтому в качестве ее количественной характеристики рассмотрим вектор:

$$\overline{r_j} = (r_{j1}, r_{j2},...),$$
 (2)

в котором r_{jg} — количество элементарных заданий задания типа \mathbf{A}_{j} , выполняемых на ресурсе $R_{_{\! g}}$ за время T (отчетный период, период планирования). Время T выбирается единым для всех типов задач. Такой подход к выбору общей единицы сравнения ресурсоемкости предлагался ранее, например в [6].

В свою очередь, векторы (2) определяют интегральную характеристику ресурсов всей системы за время T в виде матрицы, составленной из векторов r_{j} для всех типов заданий:

$$\widetilde{R} = ||r_{i\sigma}||,\tag{3}$$

размеры которой определяются числом типов заданий и числом различных видов вычислительных ресурсов распределенной системы. Далее всюду полагаем, что мощности множеств $A = \{A_1, A_2, ...\}$ и $R = \{R_1, R_2, ...\}$ конечны и равны, соответственно, |A| = a и |R| = r.

Отметим аддитивность характеристики (3), которая заключается в том, что для того, чтобы оценить возможности применения системы за время γT , достаточно умножить матрицу R на скаляр ү.

При определенных условиях, которые довольно часто возникают в реальных приложениях, общий объем необходимых вычислений для выполнения всех заданий (1) и пожелания пользователей в части сроков их выполнения приходят в противоречие с возможностями системы.

Тем самым взаимные интересы пользователей системы и интересы ее администратора приходят к неразрешимым противоречиям. При коммерческом использовании ресурсов вычислительных систем, в частности при выполнении пользовательских заданий на ресурсах распределенных сред, образованных с применением грид-технологий, предлагаются способы разрешения этих противоречий за счет использования условно-денежного исчисления при определении очередности заданий для выполнения [7].

Говорить о реально денежном исчислении в административно зависимых (замкнутых) системах довольно сложно, вследствие чего требуется определить отличный от «коммерческого» распределения ресурсов (за плату) способ. Практика использования многоядерных вычислителей позволяет предположить следующее.

Ожидаемая ценность (получаемая выгода) деятельности пользователей системы позволяет лицу, принимающему решения на основе анализа матрицы (3), выделить квоты каждому пользователю на каждое необходимое для обеспечения его деятельности задание типа $A_{,\cdot}$. Эта квота представима в виде следующего вектора:

$$\overline{U_i} = (U_{i1}, U_{i2}, \dots). \tag{4}$$

 $\overline{U_i} = (U_{i1}, U_{i2}, ...), \tag{4}$ в котором U_{ij} — количество элементарных заданий, выделенных пользователю U_i для <u>реш</u>ения задания типа A_{j} на время T. Понятно, что элементы матрицы квот составлены из строк U_i :

$$\tilde{U} = \|U_{ij}\|,\tag{5}$$

размеры такой матрицы определяются числом пользователей и числом типов заданий и должны удовлетворять условию:

$$\sum_{i} U_{ii} \le \sum_{\sigma} r_{ij}. \tag{6}$$

на результатах непрерывного анализа ситуаций, определяющих ценность получаемых решений заданий и прогноза характера их развития, пользователь может управлять порядком расходования собственной квоты (4).

Для этого пользователь должен обладать возможностью приостановки выполнения собственных заданий, заменяя их по своему усмотрению на более приоритетные (на основе субъективной оценки). Обратной стороной такой замены является потенциальная потеря выгоды от неполученной информации, ожидаемой от выполнения предыдущих заданий. Для управления процессами выполнения заданий в системе вводится следующее понятие — функция актуальности задания (функция старения), в общем случае это любая невозрастающая функция от времени, которая обращается в ноль на конечном временном отрезке. С некоторыми такими функциями можно познакомиться в [5]. В общем случае вид и значения, принимаемые функцией старения, не зависят от типа задания.

Поскольку соблюдение квот — необходимое условие деятельности администратора, пользователь для задания обязан указать предельное время пребывания задания в системе и выбрать одну из предлагаемых системой функций потери актуальности (старения) выполнения задания. Кроме этого вводятся ограничения на использование функций старения каждого из предлагаемых типов для каждого пользователя.

Функцию актуальности ν -го задания i-го пользователя на временном интервале [0,T], численно выражающую получаемую выгоду, потенциально ожидаемую пользователем при использовании результатов выполнения данного задания, обозначим как:

$$F_{\mathbf{v}}^{(i)}(t). \tag{7}$$

Как правило, функция актуальности выбирается из заданного множества.

Таким образом, администратор системы обладает следующей совокупностью сведений:

- 1. Перечень заданий и условия их выполнения (включая количество необходимых и возможных ветвей распараллеливания задания);
 - 2. Наборы заданий пользователей (1);
 - 3. Матрица ресурсов системы (3);
 - 4. Матрица квот пользователей (4);
 - 5. Функции старения пользовательских заданий (7).

В конечном счете, основная задача (выгода) администратора заключается в обработке таких заданий, которые в совокупности максимизируют величину их суммарной актуальности, за интервал планирования Т.

В количественном выражении в рамках введенных выше понятий этот функционал можно записать в виде:

$$\mathfrak{I}(t) = \sum_i \sum_{\mathbf{v}} F_{\mathbf{v}}^{(i)} \Big(\mathbf{t} \ (W_{\mathbf{v}}^{(i)}) \Big).$$
 где суммирование ведется по всем невыполненным заданиям всех пользователей. В данном

выражении τ $(\stackrel{1}{W_{v}})^{(i)}$) есть оставшееся время выполнения задания $W_{v}^{(i)}$ и является случайной величиной.

Для практических расчетов значения случайных величин в (8) заменяют на их математические ожидания. Таким образом, основная функция администратора состоит в составлении такого порядка выполнения заданий и указания такого допустимого распараллеливания их выполнения, которые максимизируют функционал (8) при ограничениях (6).

Результаты экспериментов показали, что планирование выполнения заданий на основе введения функции актуальности повышает общую результативность функционирования распределенных вычислительных систем без потерь использования ресурсов, возможно, с задержками выполнения заданий с невысокой актуальностью.

Применение разработанного автором метода распределения заданий в распределенной вычислительной среде на практике позволило создать эффективную программную реализацию разработанных методов на ПЭВМ, для которой характерны:

- масштабируемость и устойчивость работы при большом количестве пользовательских заданий;
- гарантированное обеспечение приемлемого и прогнозируемого времени выполнения заданий, определяемого пользователем;
- эффективный способ определения начальных значений пользовательских квот и доступных типов функций актуальности заданий на отчетный период при планировании заданий на основе условно-денежного исчисления;
- преемственность и совместимость с системой планирования, функционирующей в рассматриваемом классе BC.

Планируется проведение дальнейших исследований в направлении формирования комплексного критерия оценки качества обслуживания заданий в BC при использовании предложенной системы управления ресурсами и заданиями. Также в качестве перспективного рассматривается исследование возможности перехода пользователей от запрашиваемого ресурсного времени к требуемому объему вычислительной работы при формировании ресурсного запроса в ССРВ.

СПИСОК ЛИТЕРАТУРЫ:

- 1. Foster I., Kesselman C. (eds.). The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, 1999.
- 2. Корнеев В. В., Киселев А. В., Голосов П. Е. Реализация системы планирования заданий в сетевой среде распределенных вычислений на основе экономической модели // Научный сервис в сети Интернет: многоядерный компьютерный мир. 15 лет РФФИ: Труды Всероссийской научной конференции. М.: Изд-во МГУ, 2007. С. 70—73.
- 3. Семенов Д. В., Корнеев В. В., Киселев А. В., Баранов А. В., Кузнецов А. В., Голосов Π . Е. Опыт практической реализации сетевой среды распределенных вычислений // Сборник тезисов докладов Всероссийской научной конференции «Научный сервис в сети Интернет: технологии параллельного программирования». 18-23 сентября 2006 г., г. Абрау-Дюрсо, Россия.
- 4. Суриков В. Н. Задача о ключах // Обозрение прикладной и промышленной математики. Т. 16. Вып. 2. 2009. С. 274—275.
- 5. Ронжин A. Ф., Cуриков B. H. Λ инейные разделимые статистики и процессы восстановления, связанные с обобщением «задачи о ключах» // Обозрение прикладной и промышленной математики. T. 16. Bып. 2. 2009. C. 272—273.
- 7. Бахарев И. А., Крюков В. А. Управление прохождением задач на ЭВМ, препринт Института прикладной математики им. М. В. Келдыша АН СССР. 1981. № 149. <math>- 24 с.